2024
A pupillary contrast response in mice and humans: Neural mechanisms and visual functions. Fitzpatrick MJ, Krizan J, Hsiang J-C, Shen N, Kerschensteiner D. Neuron Jul 17 |html| |pdf| |suppl| |preview|
Subcellular pathways through VGluT3-expressing mouse amacrine cells provide locally tuned object-motion-selective signals in the retina. Friedrichsen K, Hsiang J-C, Lin C-I, McCoy L, Valkova K, Kerschensteiner D*, Morgan JL*. Nature Communications Apr 5 |html| |pdf| |suppl| *co-corresponding
Predation without direction selectivity. Krizan J, Song X, Fitzpatrick MJ, Shen N, Soto F, Kerschensteiner D. Proceedings of the National Academy of Sciences Mar 14 |html| |pdf| |suppl|
Distributed feature representations of natural stimuli across parallel retinal pathways. Hsiang J-C, Shen N, Soto F, Kerschensteiner D. Nature Communications Mar1 |html| |pdf| |suppl|
Mapping the retina onto the brain. Kerschensteiner D, Feller MB. Cold Spring Harbor Perspectives in Biology Feb1 |html| |pdf|
2023
Losing, preserving, and restoring vision from neurodegeneration in the eye. Kerschensteiner D. Current Biology Oct 9 |html| |pdf|
Diversity in homeostatic calcium set points predicts retinal ganglion cell survival following optic nerve injury in vivo. McCracken S, Fitzpatrick MJ, Hall AL, Wang Z, Kerschensteiner D, Morgan JL, Williams PR. Cell Reports Sep 25 |html| |pdf|
Subcellular pathways through VG3 amacrine cells provide regionally tuned object-motion-sensitive signals in the mouse retina. Friedrichsen K, Hsiang J-C, McCoy L, Valkova K, Kerschensteiner D*, Morgan JL*. bioRxiv Jul 3 |html| |pdf| *co-corresponding
2022
Homeostatic plasticity in the retina. Fitzpatrick MJ, Kerschensteiner D. Progress in Retinal and Eye Research Oct 12 |html| |pdf|
Layer-specific developmentally precise axon targeting of transient Suppressed-by-Contrast retinal ganglion cells (tSbC RGCs). Tien NW, Vitale C, Badea TC, Kerschensteiner D. Journal of Neuroscience Aug 23 |html| |pdf| |cover|
Vision: rules for thalamic mixology. Krizan, Kerschensteiner D. Current Biology Jul 25 |html| |pdf|
Feature detection by retinal ganglion cells. Kerschensteiner D. Annual Review of Vision Science Apr 6 |html| |pdf|
AMIGO1 promotes axon growth and territory matching in the retina. Soto F, Shen N, Kerschensteiner D. Journal of Neuroscience Feb 14 |html| |pdf|
2021
Cell-type-specific binocular vision guides predation in mice. Johnson KP, Fitzpatrick MJ, Zhao L, Wang B, McCracken S, Williams PR, Kerschensteiner D. Neuron Mar 29 |html| |pdf| |preview|
2020
Dendritic and parallel processing of visual threats in the retina control defensive responses. Kim T, Shen N, Hsiang JC, Johnson KP, Kerschensteiner D. Science Advances Nov 18, eabc9920 |html| |pdf|
Mammalian retina development. Kerschensteiner D. The Senses: A Comprehensive Reference, 2nd edition, Volume 1, Chapter 1.12; 234-251 |pdf|
Efficient coding by midget and parasol ganglion cells in the human retina. Soto F, Hsiang JC, Rajagopal R, Piggott K, Harocopos GJ, Couch SM, Custer P, Morgan JL, Kerschensteiner D. Neuron Jun 3:S0896-6273 |html| |pdf|
Homeostatic plasticity shapes the retinal response to photoreceptor degeneration. Shen N, Wang B, Soto F, Kerschensteiner D. Current Biology May 18; 30:1-11 |html| |pdf|
2019
AMIGO2 scales dendrite arbors in the retina. Soto F, Tien NW, Goel A, Zhao L, Ruzycki P, Kerschensteiner D. Cell Reports Nov 5; 29(6):1568-78 |html| |pdf|
Elevating growth factor responsiveness and axon regeneration by modulating presynaptic inputs. Zhang Y, Williams PR, Jacobi A, Wang C, Goel A, Hirano AA, Brecha NC, Kerschensteiner D, He Z. Neuron July 3; 103(1):1-13 |html| |pdf|
2018
Parallel processing of negative feedback: e unum pluribus. Hsiang JC, Kerschensteiner D. Neuron July 11; 99(1):5-7 |html| |pdf|
Homeostatic plasticity in neural development. Tien NW, Kerschensteiner D. Neural Development 13:9 |html| |pdf|
Synapse maintenance and restoration in the retina by NGL2. Soto F, Zhao L, Kerschensteiner D. eLife Mar 19; 7 |html| |pdf|
A pixel-encoder retinal ganglion cell with spatially offset excitatory and inhibitory receptive fields. Johnson KP, Zhao L, Kerschensteiner D. Cell Reports Feb 6; 22(6):1462-1472 |html| |pdf|
2017
Homeostatic plasticity shapes the visual system’s first synapse. Johnson RE, Tien NW, Shen N, Pearson JT, Soto F, Kerschensteiner D. Nature Communications Oct 31; 8(1):1220 |html| |pdf| |suppl|
Local processing in neurites of VGluT3-expressing amacrine cells differentially organizes visual information. Hsiang JC, Johnson KP, Madisen L, Zeng H, Kerschensteiner D. eLife Oct 12; 6 |html| |pdf|
Visual thalamus, “it’s complicated.” Kerschensteiner D, Guido W. Visual Neuroscience Jan; 34 |html| |pdf|
Organization of the dorsal lateral geniculate nucleus in the mouse. Kerschensteiner D, Guido W. Visual Neuroscience Jan; 34 |html| |pdf|
Inhibitory control of feature selectivity in an object motion sensitive circuit of the retina. Kim T, Kerschensteiner D. Cell Reports May 16; 19(7):1343-1350 |html| |pdf| |suppl|
Homeostatic plasticity shapes cell-type-specific wiring in the retina. Tien NW, Soto F, Kerschensteiner D. Neuron May 3; 94(3):656-665 |html| |pdf| |suppl|
Aligning a Synapse. Kerschensteiner D. Neuron Mar 22; 93(6):1241-3 |html| |pdf|
2016
Glutamatergic retinal waves. Kerschensteiner D. Frontiers in Neural Circuits May 10; 10:38 |html| |pdf|
Target-specific glycinergic transmission from VGluT3-expressing amacrine cells shapes suppressive contrast responses in the retina. Tien NW, Kim T, Kerschensteiner D. Cell Reports May 17; 15(7):1369-1375 |html| |pdf| |suppl|
Dendritic mitochondria reach stable positions during circuit development. Faits MC, Zhang C, Soto F, Kerschensteiner D. eLife Jan 7; 5 |html| |pdf|
2015
Synaptic remodeling of neuronal circuits in early retinal degeneration. Soto F, Kerschensteiner D. Frontiers in Cellular Neuroscience Oct 7; 9:395 |html| |pdf|
Superior colliculus does play dice. Kerschensteiner D. Neuron Sep 23; 87(6):1121-3 |html| |pdf|
Morphology and function of three VIP-expressing amacrine cell types in the mouse retina. Akrouh A, Kerschensteiner D. Journal of Neurophysiology Oct; 114(4):2431-8 |html| |pdf|
Genetically identified suppressed-by-contrast retinal ganglion cells reliably signal self-generated visual stimuli. Tien NW, Pearson JT, Heller CR, Demas J, Kerschensteiner D. Journal of Neuroscience Jul 29; 35(30):10815-20 |html| |pdf|
Ambient illumination switches contrast preference of specific retinal processing streams. Pearson JT, Kerschensteiner D. Journal of Neurophysiology Jul; 114(1):540-50 |html| |pdf|
An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina. Kim T, Soto F, Kerschensteiner D. eLife May 19; 4 |html| |pdf|
2014
Retrograde plasticity and differential competition of bipolar cell dendrites and axons in the developing retina. Johnson RE, Kerschensteiner D. Current Biology Oct 6; 24(19):2301-6 |html| |pdf| |suppl|
Integrated photoacoustic, confocal, and two-photon microscope. Rao B, Soto F, Kerschensteiner D, Wang LV. Journal Biomedical Optics Mar; 19(3):36002 |html| |pdf|
Spontaneous Network Activity and Synaptic Development. Kerschensteiner D. Neuroscientist Jun; 20(3):272-90 |html| |pdf|
2013
An allosteric regulator of R7-RGS proteins influences light-evoked activity and glutamatergic waves in the inner retina. Cain MD, Vo BQ, Kolesnikov AV, Kefalov VJ, Culican SM, Kerschensteiner D, Blumer KJ. PLoS One Dec 9; 8(12):e82276 |html| |pdf|
NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D. Journal of Neuroscience Jul 17; 33(29):11949-59 |html| |pdf|
Intersecting circuits generate precisely patterned retinal waves. Akrouh A, Kerschensteiner D. Neuron Jul 24; 79(2):322-34 |html| |pdf| |suppl|
In vivo imaging of zebrafish retina. Williams PR, Morgan JL, Kerschensteiner D, Wong RO. Cold Spring Harbor Protocols Jan 1 |html| |pdf|
In vitro imaging of retinal whole mounts.Williams PR, Morgan JL, Kerschensteiner D, Wong RO.Cold Spring Harbor Protocols Jan 1 |html| |pdf|
2012
The spatial structure of a nonlinear receptive field. Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D, Wong RO, Rieke F. Nature Neuroscience Nov; 15(11):1572-80 |html| |pdf| |suppl|
Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina. Soto F, Ma X, Cecil JL, Vo BQ, Culican SM, Kerschensteiner D. Journal of Neuroscience Apr 18; 32(16):5426-39 |html| |pdf|
Coating gold particles with DNA (biolistics). Morgan JL, Kerschensteiner D. Cold Spring Harbor Protocols Jan 1; 2012(1):114-7 |html| |pdf|
Coating particles with dextran-conjugated fluorescent dyes or other hydrophilic compounds. Morgan JL, Kerschensteiner D. Cold Spring Harbor Protocols Jan 1; 2012(1):110-3 |html| |pdf|
2011
Shooting DNA, dyes, or indicators into tissue slices using the gene gun. Morgan JL, Kerschensteiner D. Cold Spring Harbor Protocols Dec 1; 2011(12):1512-4 |html| |pdf|
Coating particles with carbocyanine dyes. Morgan JL, Kerschensteiner D. Cold Spring Harbor Protocols Dec 1; 2011(12):1507-11 |html| |pdf|
Development of cell type-specific connectivity patterns of converging excitatory axons in the retina. Morgan JL, Soto F, Wong RO, Kerschensteiner D. Neuron 2011 Sep 22; 71(6):1014-21 |html| |pdf| |suppl|
Coordinated increase in inhibitory and excitatory synapses onto retinal ganglion cells during development. Soto F, Bleckert A, Lewis R, Kang Y, Kerschensteiner D, Craig AM, Wong RO. Neural Development 2011 Aug 24; 6:31 |html| |pdf|
Circuit assembly: the repulsive side of lamination. Kerschensteiner D. Curr Biol Feb 22; 21(4):R163-6 |html| |pdf|